Learners use the coefficients in a balanced equation to develop the mole ratios of reactants and products involved in the reaction. Five interactive examples illustrate the method, and students test their knowledge by working four problems.
Learners observe that the volume of one mole of any gas is 22.4 L at standard temperature and pressure. An illustration shows that only the mass of the molar volume differs with the identity of the gas.
Determining Empirical and Molecular Formulas (Screencast)
Learners follow a four-step process to determine the empirical formula of a compound from the masses of its constituent elements. The molecular formula is determined in a fifth step using the molecular weight of the compound.
Learners examine how five or six groups of electrons around a central atom cause the shape of the molecule to be trigonal bipyramidal, seesaw, T-shaped, linear, octahedral, square pyramidal, or square planar. Seven examples and three interactive questions are provided in this animated activity.
In this brief object, learners examine the direct relationship between the volume of a gas sample and the number of moles of gas. A problem is presented so students can test their knowledge of Avogadro's Law.
Conversion Between Mass and Moles of an Element (Screencast)
Atomic weights are used to convert the mass of a sample into the number of moles of the element in the sample and vice versa. Four examples are provided for practice.
In this animated and interactive object, learners observe how two, three, or four groups of electrons around the central atom cause the shape of the molecule to be linear, trigonal planar, bent, tetrahedral, or pyramidal. Seven examples and eight interactive questions are provided.
In this learning activity learners will be hear about aspergillus found on marijuana and the potential health hazards that can affect a property room manager. Learners will hear about preventative measures.
In this well-illustrated activity, learners examine the three types of intermolecular forces: dipole-dipole forces, London or Van der Waals forces, and the hydrogen bond. Two interactive questions are included.
This screencast shows how blood droplets are held together by a strong cohesive molecular force that produces surface tension in each drop and on the external force. Surface tension pulls the surface molecules of a liquid toward its interior, decreasing the surface area and causing the liquid to resist penetration.