In this animated object, learners observe the voltage on a capacitor at various time constants when it either charges or discharges. Students then answer questions in the categories of Identify, Compare, and Compute.

Learners read about the vector diagram for a parallel RC circuit. This animated lesson presents information on current flow through each branch, total current, and phase angle.

Students read how the transfer function for a RC low pass filter is developed. The transfer function is used in Excel to graph the Vout. The circuit is also simulated in Electronic WorkBench and the resulting Bode plot is compared to the graph from Excel.

Learners view a vector diagram for a series RC circuit and read information concerning the voltage across each component, the total voltage, and the phase angle.

Learners read how the transfer function for a RC high pass filter is developed. The transfer function is used in Excel to graph the Vout. The circuit is also simulated in Electronic WorkBench and the resulting Bode plot is compared to the graph from Excel.

Transfer Functions: The RC High Pass Filter with Bode Plot

Students view the development of the transfer function for a RC high pass filter. They also read how a Bode plot is developed through simple approximation techniques for both the magnitude and phase.

In this animated object, students view an explanation of how current, voltage, and the charge on a capacitor of a series RC circuit change during five time constants. A short quiz completes the activity.

In this animated object, learners examine how current, voltage and the discharging capacitor of a series RC changes during 5 time constants. A brief quiz completes the activity.

Instantaneous Voltage Calculations of a Charging RC Circuit (Calculator TI-35X orTI-36X)

Learners view a sample of the keystrokes from a TI-35X or 36X calculator that are required to solve for the instantaneous voltage of a charging RC circuit.

Instantaneous Voltage Calculations of a Discharging RC Circuit (Using a TI-35X or a TI-36X Calculator)

In this animated object, learners view the keystrokes on a TI-35X/36X calculator that are required to solve for the instantaneous voltage of a discharging RC circuit.

Instantaneous Voltage Calculations of a Discharging RC Circuit (Using a TI-30XIIS Calculator)

In this animated object, learners view the keystrokes on a TI-30XIIS calculator that are required to solve for the instantaneous voltage of a discharging RC circuit.

Series Circuit Analysis Practice Problems: Circuit #5

In this interactive object, learners solve for total resistance and current, the current through each resistor, the voltage across each resistor, and the power dissipated.

Effects of a Rheostat in a Series-Parallel Circuit

Learners examine the current and voltage changes in a series-parallel circuit as the resistance value of a rheostat is varied. Illustrations and calculations are included.

Learners study how a circuit converts the AC output of a linear voltage differential transformer (LVDT) into variable DC voltage. It is recommended that learners view the learning object IAU7807, “The LVDT: A Linear Voltage Differential Transformer in Action” before going through this object.

In this animated object, students view an explanation of how current, voltage, and the magnetic field strength of a series RL circuit change during five time constants. A brief quiz completes the activity.