Learners review Ohm's Law and then work 12 problems to help them apply the law to automotive electrical systems. In each of the problems, students are given two of the three variables (voltage, resistance, or current) and are asked to solve for the third.
Learners review Ohm's Law and then work 12 problems to help them apply the law to automotive electrical systems. In each of the problems, students are given two of the three variables (voltage, resistance, or current) and are asked to solve for the third.
Automotive Electrical Systems: Ohm's Law Practice Problems #1
Learners review Ohm's Law and then work 12 problems to help them apply the law to automotive electrical systems. In each of the problems, students are given two of the three variables (voltage, resistance, or current) and are asked to solve for the third.
In this animated activity, learners examine how a voltage is induced into a conductor when the conductor cuts across magnetic flux lines. They also view the four factors that determine how much voltage is generated. A brief quiz completes the learning object.
Automotive Electrical Systems: Effects of a Rheostat in a Series-Parallel Circuit.
Learners examine the current and voltage changes in a series-parallel circuit as the resistance value of a rheostat is varied. Illustrations and calculations are included.
In this animated activity, students read about the two general types of variable resistors: potentiometers and rheostats. A brief quiz completes the learning object.