In this animated and interactive object, learners use a color code to understand the operations of a hydraulic circuit. A brief quiz completes the activity.
In this interactive object, learners follow the steps required for the Ziegler-Nichols Continuous Cycling method. The process identification procedure is performed, calculations are made, and the proper PID values are programmed into the controller.
Learners perform the steps required for the Ziegler-Nichols Reaction Curve Tuning Method. The process identification procedure is performed, calculations are made, and the proper PID values are programmed into the controller.
The Formation of Ester Bonds in the Synthesis of Lipids
In this animated object, learners examine the formation of ester bonds in the synthesis of lipids using triglyceride biosynthesis as an example. Ester bond formation is described as a dehydration synthesis reaction.
Op Amp Fundamentals: The Transconductance Amplifier
Students read an introduction to the transconductance amplifier. They also view formulas for voltage-to-current conversion, closed-loop input, and output impedance. An example of how R1 controls the conversion factor is given.
Op Amp Fundamentals: The Transresistance Amplifier
The current-to-voltage conversion of the transresistance amplifier is examined. The formulas for output voltage and impedance are defined and an example ties the concepts together.
Boyle's Law states that gas volume varies inversely with the pressure at constant temperature and is described by the equation PV = constant. An example of a sample of gas at two conditions of P and V is used to illustrate the law.